
DrupalCamp CT 2012

Preston So
August 18, 2012

¡  Preston So (@prestonso) is Prototyper Intern
at Acquia and co-maintainer of the upcoming
Spark distribution. He founded the Southern
Colorado User Group.

 www.prestonsodesign.com
 drupal.org/user/325491
 pso@college.harvard.edu
 preston.so@acquia.com

Drupal design principles

The “Drupal-aware” spectrum

Drupal-aware design

Drupal-aware theming

To Drupal and beyond

1	

2	

3	

4

4

¡  Design in Drupal has come a long way.

¡  About four years ago, Dries mentioned that 3
out of 4 Drupal sites are ugly.

¡  That’s changed (pretty substantially), but what
has replaced ugly Drupal designs? Ugly Drupal
implementations of themes that are not
extensible or flexible.

¡  There is a dramatic change in process between
design and theme.
§  Structure. Photoshop layers vs. theme templates.
§  Goal. Good design vs. integration with Drupal.
§  Process. Putting things together vs. making things

display right.
§  Next steps. Focus on the theme vs. focus on the

Drupal implementation.

¡  Handovers in markup cause consternation and
disapproval when later stages are reviewed.

¡  Without a complete understanding of the
design, the themer does not know how to
approach the design.

¡  Without a complete understanding of the
theming process, the designer does not know
how to approach Drupal.

¡  We can bring designers and themers together
for a more robust design and theme process.

¡  Designers and themers need to know at least
the basics of what each is doing.

¡  Design principles are worthy sources of wisdom
not only for the design process, but also for our
project process.

¡  Where might some design principles come into
play at the design-theme interface?

Postel’s robustness principle

General design principles

Drupal 7 UX principles

1	

¡  Design principles by Jeremy Keith
principles.adactio.com

¡  Drupal 7 UX design principles
www.d7ux.org

Be conservative in what you send;
be liberal in what you accept.

¡  In the original sense, most simply, code sent to
other places should follow the recipient’s
specifications, while code that is received can
be handled even if it does not conform.

Be conservative in what you send;
be liberal in what you accept.

¡  Designers should ensure their designs
transition gracefully into diverse code.

¡  Themers should write themes taking into
account many different possibilities.

When browsers are lax about what
they expect, the system works better
but also it encourages laxness on the

part of web page writers. !e principle
of tolerance does not blunt the need

for a perfectly clear protocol
speci"cation which draws a precise

distinction between a conformance and
non-conformance. !e principle of
tolerance is no excuse for a product

which contravenes a standard.

TIM BERNERS-LEE
1998

We follow the standards of Drupal.
Where standards are weak,

we champion new standards and
prove why those standards are

more effective.

¡  When designing and implementing designs in

Drupal, should we stick to Drupal paradigms
across the board, even in HTML/CSS?

The answer is sort of.

¡  Yes cases

The site will be in Drupal.
The theme will be contributed.

¡  Maybe cases
The site may not be in Drupal forever (e.g. prototype).
The theme may need to be Drupal-agnostic.

Good design is
as little design

as possible.

DIETER RAMS
1976

Design for the 80%.

Privilege the content creator.

Make the default settings smart.

What is Drupal-aware?

From Drupal-agnostic …

To embracing Drupal

2	

¡  What is designing for Drupal?
Using standard Drupal areas and regions
Using particular Drupal classes (e.g. page-front)
This methodology embraces Drupal.

¡  What is designing with Drupal?
Anticipating standard Drupal areas and regions
Anticipating particular Drupal classes (e.g. page-front)
This methodology is aware of Drupal, or perhaps even
agnostic to Drupal.

¡  If the use of Drupal is uncertain, we should
tailor our code to anticipate all possibilities.

¡  What might this look like?

¡  Ask yourself some questions about your intent:
Will the theme be contributed?
Will the theme have sub-themes?
Will the design need to change from Drupal?
Will the theme need to change from Drupal?

¡  Then, tailor both the design and theming
processes to this intent.

Drupal-only Drupal-
aware

Drupal-
agnostic

away from Drupal à

Drupal-only Drupal-
aware

Drupal-
agnostic

¡  Fast theming
¡  Low tolerance for

non-Drupal markup

away from Drupal à

¡  Our design is built using Drupal classes/names.

ul.primary {
 /* primary links CSS */
}
ul.secondary {
 /* secondary links CSS */
}

Drupal-only Drupal-
aware

Drupal-
agnostic

¡  Slower theming
¡  High tolerance for

non-Drupal markup

away from Drupal à

¡  We can use whatever markup we desire.

nav#primary {
 /* primary links CSS */
}
nav#secondary {
 /* secondary links CSS */
}

¡  As we move closer to Drupal as a need on this
spectrum, we should ensure that our designs
and themes utilize classes and elements that
are most conducive to Drupal.

¡  But a “Drupal-aware” theme should not only run
well on Drupal but also other CMSes.

¡  This is a fusion of both Drupal-only and Drupal-
agnostic approaches.

¡  A selection of one of these processes does not
mean that it is the end-all, be-all solution.

¡  As with every project, approaches need to be
analyzed and tested. No one solution will work
for all conditions.

¡  This spectrum model is only intended to allow
you to visualize the possible approaches to
follow.

¡  A Drupal-aware methodology is a great idea for
rapid prototyping, rapid implementation, or
simply to test a variety of conditions.

¡  Jeff Noyes, “Rapid Prototyping with Drupal”,
Design 4 Drupal 2009
www.youtube.com/watch?v=O25Wuts90sw

Drupal-only Drupal-
aware

Drupal-
agnostic

away from Drupal à

¡  Account-for-all theming
¡  Tolerance for both

markup styles

¡  Account for myriad possibilities in the CSS:

ul.primary, nav#primary {
 /* primary links CSS */
}
ul.secondary, nav#secondary {
 /* secondary links CSS */
}

¡  So what is the endgame in terms of perfecting
the convergence of design and theming
methodologies and processes?

¡  A design should be easily integrated with
Drupal, but it should leave other options open.

¡  A theme should be usable in any Drupal
scenario, and it should most ideally lack extra,
redundant code as well as presentational
material.

The stacked-paper model

Standards and conventions

Usability concerns and considerations

3	

¡  As usual, envision
designs and wireframes
using an approach based
on the user experience.

¡  D7UX: Design for the
80%.

¡  But also: Envision designs and wireframes using
a stacked-paper model to evaluate regions and
the structure of the document.

¡  But also: Envision designs and wireframes using
a stacked-paper model to evaluate regions and
the structure of the document.

System template
page.tpl.php

region.tpl.php
block.tpl.php

Block content

System template
page.tpl.php

region.tpl.php
block.tpl.php

Block content

System template
page.tpl.php

region.tpl.php
System block.tpl.php

Block content

If it ain’t broke, don’t fix it.

¡  Drupal gives us a very
robust set of default
system templates to
work with.

¡  See what Drupal
produces; it has impact
on your design.

Theme robustness

Conditions in theming

Best practices for templates

4	

¡  We’ve all seen stuff like this before:

/* @group Drupal overrides */
.node-promoted h2,
#block-system-main-menu h2,
.node-promoted ul.links li {
 display: none;
}
/* @end */

¡  Drupal can sometimes produce some nasty
overlaps in code with system CSS.

¡  Use a CSS reset or base presentational aspects
of theme off of system defaults.

¡  Drupal overrides should generally be avoided,
because they are hard to manage and uglify
your beautifully written CSS.

¡  Use built-in Drupal display configurations to
change the visibility and style of elements such
as fields, labels, headings, etc.
§  For example, you can use Views to add CSS classes

that are easier to manipulate than unwieldy classes
like .views-views-row or .views-views-field.

¡  Use a style guide to manage hierarchical
relationships between elements and to track
how they are used on the page.
§  For example, track heading tags based on other

headings in use as well as Drupal defaults.
§  Ken Woodworth, “Designing and Implementing

Beautiful Flexible Interfaces,” Design 4 Drupal 2012.
§  boston2012.design4drupal.org/sites/default/files/

slides/Designing%20Interfaces.pdf

¡  Key to Drupal is the split between structure and
presentation.

¡  Keep as much as possible in the presentation
layer so that more flexible structures can be
accepted.

¡  Avoid esoteric code.

¡  Esoteric code leads to difficulties in markup
handover and extending your prior work.

¡  As we design, whether it is a wireframe or
prototype, we should think always about the
next steps for the design, as if code will be
reused every step of the way.

¡  Take the following snippet from economist.com.
How would you create this if the entire area
was a region?

¡  When creating themes, we should avoid adding
anything to the extreme amount of HTML
Drupal already has. Two regions?

<div id=“left”>
 <div class=“block”></div>
 <div class=“block”></div>
</div>
<div id=“right”>
 <div class=“block”></div>
</div>

¡  We should allow our HTML to embrace
semantic richness as much as possible, as little
as Drupal allows us:

<div class=“block”></div>
<div class=“block”></div>
<div class=“block”></div>

¡  Instead, as much as possible, we should
maintain semantic value in everything we write
in template files.

.block {
 float: left;
}
.block:last-child {
 float: right;
}

¡  We should also strive to avoid making
modifications where they would impact usability
or accessibility. Design for the 80%.

<div class=“block”>
 <h2 class=“block-title”>Title</h2>
 <div class=“block-content”>
 <p>A block.</p>
 </div>
</div>

¡  Let’s reverse the order of our block elements.
Easy enough in the template, right?

¡  Sometimes the easy way is not the right one.

<div class=“block”>
 <div class=“block-content”>
 <p>A block.</p>
 </div>
 <h2 class=“block-title”>Title</h2>
</div>

¡  If the modification compromises the semantic
structure or accessibility of the document, then
we should unequivocally avoid it.

<div class=“block”>
 <h2 class=“block-title”>Title</h2>
 <div class=“block-content”>
 <p>A block.</p>
 </div>
</div>

¡  Remember back in the day?

<table>
 <tr>
 <td width=“33%”>Left sidebar</td>
 <td width=“67%”>Content area</td>
 </tr>
</table>

¡  A client asks you to remove the sidebar.

<table>
 <tr>
 <td width=“33%”>Left sidebar</td>
 <td width=“67%”>Content area</td>
 </tr>
</table>

¡  Uh-oh.

<table>
 <tr>

 <td width=“67%”>Content area</td>
 </tr>
</table>

¡  We can condition based on sidebar existence:

<?php if ($page['sidebar_first']): ?>
 <div id="sidebar-first" class="sidebar">
 <?php print
>> render($page['sidebar_first']); ?>
 </div>
<?php endif; ?>

¡  With CSS we can specify based on body classes:

body.two-sidebars {
 min-width: 980px;
}
body.sidebar-first,
body.sidebar-second {
 min-width: 780px;
}

Standards, conventions, documentation

Contributing to Drupal

New horizons

5	

¡  Code standards in Drupal are important for
code readability and documentation purposes.

¡  Writing a theme that you intend to contribute
to Drupal requires awareness of the
conventions involved.

¡  Indents consist of 2 spaces.

¡  Keep CSS readable and navigable (include line
breaks).

¡  Alphabetize CSS properties within declaration
blocks (a Drupal best practice).

¡  Refer to other themes, such as core themes
and the most widely used contributed themes,
to brush up on standards.

drupal.org/coding-standards

¡  The Drupal implementation of Doxygen, a
documentation aggregation service, has
conventions that should be followed.

¡  Your themes should be well-commented and
easy to navigate.

drupal.org/node/1354

¡  Comment blocks are as follows:

/**
 * Documentation goes here.
 */

¡  Each file begins with a doc header as follows:

/**
 * @file
 * The theme system, which controls the
>> output of Drupal.
 */
...

¡  And a listing of the variables in use:

...
 * Available variables:
 * - $forums: An array of forums to
>> display. Each $forum in $forums
>> contains:
 * - $forum->is_container: Is TRUE if
>> the forum can contain other forums.
...

¡  Drupal is constantly in need of better, more
flexible themes.

¡  Contributed themes, since they are optimized
for Drupal, should follow a Drupal-only
paradigm, but you can certainly account for
other potential outcomes.

drupal.org/node/14208

¡  The upcoming Spark distribution will
fundamentally change the way themes create
layout, as well as the end-user UI.

¡  The possibility of flexible layouts is essential
here. Themes will need to account for any
possibility of layouts.

¡  The goal of our Layout module is to give
designers easier tools to create responsive
layouts using grid systems.

¡  It will also give content editors much more
capability in structuring their copy.

¡  Please consider contributing to our efforts on
Spark by testing and reporting issues.

drupal.org/project/spark
drupal.org/project/edit

drupal.org/project/layout

¡  Kevin O’Leary, “Improving the Content Editing
Experience with Spark”, 10:30, Acquia Skyline
§  Demo: www.youtube.com/watch?v=Ek2eyWZPI1c

¡  Design principles can help guide us in creating
themes that are flexible and extend well.

¡  Drupal-aware design involves consideration of
the way Drupal structures its themable output.

¡  Drupal-aware theming involves consideration of
structure vs. presentation and the reusability of
theme code.

¡  What do you think about accounting for when
you write a theme?

¡  What methodologies do you use in your design
and theming processes?

¡  What problems have you encountered during
these processes?

¡  Preston So (prestonso) is Prototyper Intern at
Acquia and co-maintainer of the upcoming
Spark distribution. He founded the Southern
Colorado User Group.

 www.prestonsodesign.com
 drupal.org/user/325491
 pso@college.harvard.edu
 preston.so@acquia.com

